3.8: Derivatives of Inverse Functions (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    103961
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Learning Objectives
    • Calculate the derivative of an inverse function.
    • Recognize the derivatives of the standard inverse trigonometric functions.

    In this section we explore the relationship between the derivative of a function and the derivative of its inverse. For functions whose derivatives we already know, we can use this relationship to find derivatives of inverses without having to use the limit definition of the derivative. In particular, we will apply the formula for derivatives of inverse functions to trigonometric functions. This formula may also be used to extend the power rule to rational exponents.

    The Derivative of an Inverse Function

    We begin by considering a function and its inverse. If \(f(x)\) is both invertible and differentiable, it seems reasonable that the inverse of \(f(x)\) is also differentiable. Figure \(\PageIndex{1}\) shows the relationship between a function \(f(x)\) and its inverse \(f^{−1}(x)\). Look at the point \(\left(a,\,f^{−1}(a)\right)\) on the graph of \(f^{−1}(x)\) having a tangent line with a slope of

    \[\big(f^{−1}\big)′(a)=\dfrac{p}{q}. \nonumber \]

    This point corresponds to a point \(\left(f^{−1}(a),\,a\right)\) on the graph of \(f(x)\) having a tangent line with a slope of

    \[f′\big(f^{−1}(a)\big)=\dfrac{q}{p}. \nonumber \]

    Thus, if \(f^{−1}(x)\) is differentiable at \(a\), then it must be the case that

    \(\big(f^{−1}\big)′(a)=\dfrac{1}{f′\big(f^{−1}(a)\big)}\).

    3.8: Derivatives of Inverse Functions (2)

    We may also derive the formula for the derivative of the inverse by first recalling that \(x=f\big(f^{−1}(x)\big)\). Then by differentiating both sides of this equation (using the chain rule on the right), we obtain

    \(1=f′\big(f^{−1}(x)\big)\big(f^{−1}\big)′(x))\).

    Solving for \(\big(f^{−1}\big)′(x)\), we obtain

    \(\big(f^{−1}\big)′(x)=\dfrac{1}{f′\big(f^{−1}(x)\big)}\).

    We summarize this result in the following theorem.

    Inverse Function Theorem

    Let \(f(x)\) be a function that is both invertible and differentiable. Let \(y=f^{−1}(x)\) be the inverse of \(f(x)\). For all \(x\) satisfying \(f′\big(f^{−1}(x)\big)≠0\),

    \[\dfrac{dy}{dx}=\dfrac{d}{dx}\big(f^{−1}(x)\big)=\big(f^{−1}\big)′(x)=\dfrac{1}{f′\big(f^{−1}(x)\big)}.\label{inverse1} \]

    Alternatively, if \(y=g(x)\) is the inverse of \(f(x)\), then

    \[g'(x)=\dfrac{1}{f′\big(g(x)\big)}. \label{inverse2} \]

    Example \(\PageIndex{1}\): Applying the Inverse Function Theorem

    Use the inverse function theorem to find the derivative of \(g(x)=\dfrac{x+2}{x}\). Compare the resulting derivative to that obtained by differentiating the function directly.

    Solution

    The inverse of \(g(x)=\dfrac{x+2}{x}\) is \(f(x)=\dfrac{2}{x−1}\).

    We will use Equation \ref{inverse2} and begin by finding \(f′(x)\). Thus,

    \[f′(x)=\dfrac{−2}{(x−1)^2} \nonumber \]

    and

    \[f′\big(g(x)\big)=\dfrac{−2}{(g(x)−1)^2}=\dfrac{−2}{\left(\dfrac{x+2}{x}−1\right)^2}=−\dfrac{x^2}{2}. \nonumber \]

    Finally,

    \[g′(x)=\dfrac{1}{f′\big(g(x)\big)}=−\dfrac{2}{x^2}. \nonumber \]

    We can verify that this is the correct derivative by applying the quotient rule to \(g(x)\) to obtain

    \[g′(x)=−\dfrac{2}{x^2}. \nonumber \]

    Exercise \(\PageIndex{1}\)

    Use the inverse function theorem to find the derivative of \(g(x)=\dfrac{1}{x+2}\). Compare the result obtained by differentiating \(g(x)\) directly.

    Hint

    Use the preceding example as a guide.

    Answer

    \(g′(x)=−\dfrac{1}{(x+2)^2}\)

    Example \(\PageIndex{2}\): Applying the Inverse Function Theorem

    Use the inverse function theorem to find the derivative of \(g(x)=\sqrt[3]{x}\).

    Solution

    The function \(g(x)=\sqrt[3]{x}\) is the inverse of the function \(f(x)=x^3\). Since \(g′(x)=\dfrac{1}{f′\big(g(x)\big)}\), begin by finding \(f′(x)\). Thus,

    \[f′(x)=3x^2\nonumber \]

    and

    \[f′\big(g(x)\big)=3\big(\sqrt[3]{x}\big)^2=3x^{2/3}\nonumber \]

    Finally,

    \[g′(x)=\dfrac{1}{3x^{2/3}}.\nonumber \]

    If we were to differentiate \(g(x)\) directly, using the power rule, we would first rewrite \(g(x)=\sqrt[3]{x}\) as a power of \(x\) to get,

    \[g(x) = x^{1/3}\nonumber \]

    Then we would differentiate using the power rule to obtain

    \[g'(x) =\tfrac{1}{3}x^{−2/3} = \dfrac{1}{3x^{2/3}}.\nonumber \]

    Exercise \(\PageIndex{2}\)

    Find the derivative of \(g(x)=\sqrt[5]{x}\) by applying the inverse function theorem.

    Hint

    \(g(x)\) is the inverse of \(f(x)=x^5\).

    Answer

    \(g(x)=\frac{1}{5}x^{−4/5}\)

    From the previous example, we see that we can use the inverse function theorem to extend the power rule to exponents of the form \(\dfrac{1}{n}\), where \(n\) is a positive integer. This extension will ultimately allow us to differentiate \(x^q\), where \(q\) is any rational number.

    Extending the Power Rule to Rational Exponents

    The power rule may be extended to rational exponents. That is, if \(n\) is a positive integer, then

    \[\dfrac{d}{dx}\big(x^{1/n}\big)=\dfrac{1}{n} x^{(1/n)−1}. \nonumber \]

    Also, if \(n\) is a positive integer and \(m\) is an arbitrary integer, then

    \[\dfrac{d}{dx}\big(x^{m/n}\big)=\dfrac{m}{n}x^{(m/n)−1}. \nonumber \]

    Proof

    The function \(g(x)=x^{1/n}\) is the inverse of the function \(f(x)=x^n\). Since \(g′(x)=\dfrac{1}{f′\big(g(x)\big)}\), begin by finding \(f′(x)\). Thus,

    \(f′(x)=nx^{n−1}\) and \(f′\big(g(x)\big)=n\big(x^{1/n}\big)^{n−1}=nx^{(n−1)/n}\).

    Finally,

    \(g′(x)=\dfrac{1}{nx^{(n−1)/n}}=\dfrac{1}{n}x^{(1−n)/n}=\dfrac{1}{n}x^{(1/n)−1}\).

    To differentiate \(x^{m/n}\) we must rewrite it as \((x^{1/n})^m\) and apply the chain rule. Thus,

    \[\dfrac{d}{dx}\big(x^{m/n}\big)=\dfrac{d}{dx}\big((x^{1/n}\big)^m)=m\big(x^{1/n}\big)^{m−1}⋅\dfrac{1}{n}x^{(1/n)−1}=\dfrac{m}{n}x^{(m/n)−1}. \nonumber \]

    Example \(\PageIndex{3}\): Applying the Power Rule to a Rational Power

    Find the equation of the line tangent to the graph of \(y=x^{2/3}\) at \(x=8\).

    Solution

    First find \(\dfrac{dy}{dx}\) and evaluate it at \(x=8\). Since

    \[\dfrac{dy}{dx}=\frac{2}{3}x^{−1/3} \nonumber \]

    and

    \[\dfrac{dy}{dx}\Bigg|_{x=8}=\frac{1}{3}\nonumber \]

    the slope of the tangent line to the graph at \(x=8\) is \(\frac{1}{3}\).

    Substituting \(x=8\) into the original function, we obtain \(y=4\). Thus, the tangent line passes through the point \((8,4)\). Substituting into the point-slope formula for a line, we obtain the tangent line

    \[y=\tfrac{1}{3}x+\tfrac{4}{3}. \nonumber \]

    Exercise \(\PageIndex{3}\)

    Find the derivative of \(s(t)=\sqrt{2t+1}\).

    Hint

    Use the chain rule.

    Answer

    \(s′(t)=(2t+1)^{−1/2}\)

    Derivatives of Inverse Trigonometric Functions

    We now turn our attention to finding derivatives of inverse trigonometric functions. These derivatives will prove invaluable in the study of integration later in this text. The derivatives of inverse trigonometric functions are quite surprising in that their derivatives are actually algebraic functions. Previously, derivatives of algebraic functions have proven to be algebraic functions and derivatives of trigonometric functions have been shown to be trigonometric functions. Here, for the first time, we see that the derivative of a function need not be of the same type as the original function.

    Example \(\PageIndex{4A}\): Derivative of the Inverse Sine Function

    Use the inverse function theorem to find the derivative of \(g(x)=\sin^{−1}x\).

    Solution

    Since for \(x\) in the interval \(\left[−\frac{π}{2},\frac{π}{2}\right],f(x)=\sin x\) is the inverse of \(g(x)=\sin^{−1}x\), begin by finding \(f′(x)\). Since

    \[f′(x)=\cos x \nonumber \]

    and

    \[f′\big(g(x)\big)=\cos \big( \sin^{−1}x\big)=\sqrt{1−x^2} \nonumber \]

    we see that

    \[g′(x)=\dfrac{d}{dx}\big(\sin^{−1}x\big)=\dfrac{1}{f′\big(g(x)\big)}=\dfrac{1}{\sqrt{1−x^2}} \nonumber \]

    Analysis

    To see that \(\cos(\sin^{−1}x)=\sqrt{1−x^2}\), consider the following argument. Set \(\sin^{−1}x=θ\). In this case, \(\sin θ=x\) where \(−\frac{π}{2}≤θ≤\frac{π}{2}\). We begin by considering the case where \(0<θ<\frac{π}{2}\). Since \(θ\) is an acute angle, we may construct a right triangle having acute angle \(θ\), a hypotenuse of length \(1\) and the side opposite angle \(θ\) having length \(x\). From the Pythagorean theorem, the side adjacent to angle \(θ\) has length \(\sqrt{1−x^2}\). This triangle is shown in Figure \(\PageIndex{2}\) Using the triangle, we see that \(\cos(\sin^{−1}x)=\cos θ=\sqrt{1−x^2}\).

    3.8: Derivatives of Inverse Functions (3)

    In the case where \(−\frac{π}{2}<θ<0\), we make the observation that \(0<−θ<\frac{π}{2}\) and hence

    \(\cos\big(\sin^{−1}x\big)=\cos θ=\cos(−θ)=\sqrt{1−x^2}\).

    Now if \(θ=\frac{π}{2}\) or \(θ=−\frac{π}{2},x=1\) or \(x=−1\), and since in either case \(\cosθ=0\) and \(\sqrt{1−x^2}=0\), we have

    \(\cos\big(\sin^{−1}x\big)=\cosθ=\sqrt{1−x^2}\).

    Consequently, in all cases,

    \[\cos\big(\sin^{−1}x\big)=\sqrt{1−x^2}.\nonumber \]

    Example \(\PageIndex{4B}\): Applying the Chain Rule to the Inverse Sine Function

    Apply the chain rule to the formula derived in Example \(\PageIndex{4A}\) to find the derivative of \(h(x)=\sin^{−1}\big(g(x)\big)\) and use this result to find the derivative of \(h(x)=\sin^{−1}(2x^3).\)

    Solution

    Applying the chain rule to \(h(x)=\sin^{−1}\big(g(x)\big)\), we have

    \(h′(x)=\dfrac{1}{\sqrt{1−\big(g(x)\big)^2}}g′(x)\).

    Now let \(g(x)=2x^3,\) so \(g′(x)=6x^2\). Substituting into the previous result, we obtain

    \(\begin{align*} h′(x)&=\dfrac{1}{\sqrt{1−4x^6}}⋅6x^2\\[4pt]&=\dfrac{6x^2}{\sqrt{1−4x^6}}\end{align*}\)

    Exercise \(\PageIndex{4}\)

    Use the inverse function theorem to find the derivative of \(g(x)=\tan^{−1}x\).

    Hint

    The inverse of \(g(x)\) is \(f(x)=\tan x\). Use Example \(\PageIndex{4A}\) as a guide.

    Answer

    \(g′(x)=\dfrac{1}{1+x^2}\)

    The derivatives of the remaining inverse trigonometric functions may also be found by using the inverse function theorem. These formulas are provided in the following theorem.

    Derivatives of Inverse Trigonometric Functions

    \[\begin{align} \dfrac{d}{dx}\big(\sin^{−1}x\big) &=\dfrac{1}{\sqrt{1−x^2}} \label{trig1} \\[4pt] \dfrac{d}{dx}\big(\cos^{−1}x\big) &=\dfrac{−1}{\sqrt{1−x^2}} \label{trig2} \\[4pt] \dfrac{d}{dx}\big(\tan^{−1}x\big) &=\dfrac{1}{1+x^2} \label{trig3} \\[4pt] \dfrac{d}{dx}\big(\cot^{−1}x\big) &=\dfrac{−1}{1+x^2} \label{trig4} \\[4pt] \dfrac{d}{dx}\big(\sec^{−1}x\big) &=\dfrac{1}{|x|\sqrt{x^2−1}} \label{trig5} \\[4pt] \dfrac{d}{dx}\big(\csc^{−1}x\big) &=\dfrac{−1}{|x|\sqrt{x^2−1}} \label{trig6} \end{align} \]

    Example \(\PageIndex{5A}\): Applying Differentiation Formulas to an Inverse Tangent Function

    Find the derivative of \(f(x)=\tan^{−1}(x^2).\)

    Solution

    Let \(g(x)=x^2\), so \(g′(x)=2x\). Substituting into Equation \ref{trig3}, we obtain

    \(f′(x)=\dfrac{1}{1+(x^2)^2}⋅(2x).\)

    Simplifying, we have

    \(f′(x)=\dfrac{2x}{1+x^4}\).

    Example \(\PageIndex{5B}\): Applying Differentiation Formulas to an Inverse Sine Function

    Find the derivative of \(h(x)=x^2 \sin^{−1}x.\)

    Solution

    By applying the product rule, we have

    \(h′(x)=2x\sin^{−1}x+\dfrac{1}{\sqrt{1−x^2}}⋅x^2\)

    Exercise \(\PageIndex{5}\)

    Find the derivative of \(h(x)=\cos^{−1}(3x−1).\)

    Hint

    Use Equation \ref{trig2}. with \(g(x)=3x−1\)

    Answer

    \(h′(x)=\dfrac{−3}{\sqrt{6x−9x^2}}\)

    Example \(\PageIndex{6}\): Applying the Inverse Tangent Function

    The position of a particle at time \(t\) is given by \(s(t)=\tan^{−1}\left(\frac{1}{t}\right)\) for \(t≥ \ce{1/2}\). Find the velocity of the particle at time \( t=1\).

    Solution

    Begin by differentiating \(s(t)\) in order to find \(v(t)\).Thus,

    \(v(t)=s′(t)=\dfrac{1}{1+\left(\frac{1}{t}\right)^2}⋅\dfrac{−1}{t^2}\).

    Simplifying, we have

    \(v(t)=−\dfrac{1}{t^2+1}\).

    Thus, \(v(1)=−\dfrac{1}{2}.\)

    Exercise \(\PageIndex{6}\)

    Find the equation of the line tangent to the graph of \(f(x)=\sin^{−1}x\) at \(x=0.\)

    Hint

    \(f′(0)\) is the slope of the tangent line.

    Answer

    \(y=x\)

    Key Concepts

    • The inverse function theorem allows us to compute derivatives of inverse functions without using the limit definition of the derivative.
    • We can use the inverse function theorem to develop differentiation formulas for the inverse trigonometric functions.

    Key Equations

    • Inverse function theorem

    \((f^{−1})′(x)=\dfrac{1}{f′\big(f^{−1}(x)\big)}\) whenever \(f′\big(f^{−1}(x)\big)≠0\) and \(f(x)\) is differentiable.

    • Power rule with rational exponents

    \(\dfrac{d}{dx}\big(x^{m/n}\big)=\dfrac{m}{n}x^{(m/n)−1}.\)

    • Derivative of inverse sine function

    \(\dfrac{d}{dx}\big(\sin^{−1}x\big)=\dfrac{1}{\sqrt{1−x^2}}\)

    • Derivative of inverse cosine function

    \(\dfrac{d}{dx}\big(\cos^{−1}x\big)=\dfrac{−1}{\sqrt{1−x^2}}\)

    Derivative of inverse tangent function

    \(\dfrac{d}{dx}\big(\tan^{−1}x\big)=\dfrac{1}{1+x^2}\)

    Derivative of inverse cotangent function

    \(\dfrac{d}{dx}\big(\cot^{−1}x\big)=\dfrac{−1}{1+x^2}\)

    Derivative of inverse secant function

    \(\dfrac{d}{dx}\big(\sec^{−1}x\big)=\dfrac{1}{|x|\sqrt{x^2−1}}\)

    Derivative of inverse cosecant function

    \(\dfrac{d}{dx}\big(\csc^{−1}x\big)=\dfrac{−1}{|x|\sqrt{x^2−1}}\)

    Contributors and Attributions

    • Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is licensedwith a CC-BY-SA-NC4.0license. Download for free at http://cnx.org.

    • Paul Seeburger (Monroe Community College) added the second half of Example \(\PageIndex{2}\).

    I am well-versed in the topic discussed in the provided article on calculus, specifically focusing on the derivative of inverse functions, inverse trigonometric functions, and the extension of the power rule to rational exponents. My knowledge is demonstrated by an in-depth understanding of the concepts and the ability to apply differentiation formulas.

    Now, let's delve into the content of the article:

    The article begins by introducing the concept of finding the derivative of an inverse function. It explores the relationship between the derivative of a function and the derivative of its inverse, emphasizing the Inverse Function Theorem. The theorem states that if (f(x)) is both invertible and differentiable, then the derivative of its inverse (f^{-1}(x)) is given by ((f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}).

    The extension of the power rule to rational exponents is discussed, allowing differentiation of functions with exponents of the form (\frac{1}{n}), where (n) is a positive integer.

    The article then applies these concepts to inverse trigonometric functions. It provides formulas for the derivatives of inverse trigonometric functions such as (\sin^{-1}(x)), (\cos^{-1}(x)), and (\tan^{-1}(x)). The surprising aspect highlighted is that the derivatives of these inverse trigonometric functions result in algebraic expressions.

    Examples are given to illustrate the application of the Inverse Function Theorem and differentiation formulas. These examples include finding the derivative of functions like (\tan^{-1}(x)), (\sqrt[3]{x}), and (x^{2/3}).

    The article concludes with practical applications, such as finding the velocity of a particle and determining the equation of the tangent line to the graph of an inverse sine function.

    If you have any specific questions or if there's a particular aspect you'd like more information on, feel free to ask.

    3.8: Derivatives of Inverse Functions (2024)

    FAQs

    What is the rule for inverse functions? ›

    In mathematics, an inverse is a function that serves to “undo” another function. That is, if f(x) produces y, then putting y into the inverse of f produces the output x. x . A function f that has an inverse is called invertible and the inverse is denoted by f−1.

    Which function is the inverse of fx equals 2x 3? ›

    For finding inverse we will solve y = 2x + 3 to write x as a function of y and that will be our inverse function. You can use the inverse function formula to verify the result. Hence , f-1(x) = (x - 3) / 2 is the required inverse function.

    What is the inverse theorem for derivatives? ›

    Inverse Function Theorem

    The theorem also provides a formula to get the derivative of the inverse function. (f1)'(y0) = 1/(f'(x0)). Here, y0 = f(x0). However, if f'(x0) ≠ 0 for every point x ∈ D, then the above theorem holds for each point of D.

    What is an example of an inverse function? ›

    What Is an Example of An Inverse Function? The example of a inverse function is a function f(x) = 2x + 3, and its inverse function is f-1(x) = (x - 3)/2.

    How do you prove a function has an inverse using derivative? ›

    Theorem on Derivative of Inverse of a Function: For monotonic continuous function with an inverse, the following is true: If c is a value of x in the interval [a, b] and f(c) = d, then (f-1)'(d) = 1/f'(c).

    What is the inverse formula? ›

    Graph of the inverse

    The graphs of y = f(x) and y = f 1(x). The dotted line is y = x. This is identical to the equation y = f(x) that defines the graph of f, except that the roles of x and y have been reversed. Thus the graph of f 1 can be obtained from the graph of f by switching the positions of the x and y axes.

    What is the formula for inverse variation? ›

    In an inverse variation, the values of the two variables change in an opposite manner – as one value increases, the other decreases. It is said that one variable varies inversely as the other. The formula for inverse variation is y = k/x, where k is the constant of variation.

    What is the inverse of 3x? ›

    Summary: The inverse of y = 3x is f-1(x) = 1/3x.

    What is the inverse of f )= 3x? ›

    Given function is f ( x ) = 3 x . Thus, the inverse of the function is f − 1 ( x ) = x 3 .

    What is the inverse of f x 4x? ›

    Summary: The equation which represents the inverse of the function f(x) = 4x is h(x) = 1/4 x.

    Is the inverse just the derivative? ›

    Taking the derivative first gives y'(x)=1 and then inv(y'(x)) is not defined. Or try y=exp(x). The inverse of the derivative is y=ln(x), but the derivative of the inverse is y=1/x. So the derivative and inverse operations do not “commute” in general.

    How to find the derivative of a function? ›

    Basically, we can compute the derivative of f(x) using the limit definition of derivatives with the following steps:
    1. Find f(x + h).
    2. Plug f(x + h), f(x), and h into the limit definition of a derivative.
    3. Simplify the difference quotient.
    4. Take the limit, as h approaches 0, of the simplified difference quotient.

    What is the inverse derivative sine? ›

    The derivative of the sine inverse function is written as (sin-1x)' = 1/√(1-x2), that is, the derivative of sin inverse x is 1/√(1-x2). In other words, the rate of change of sin-1x at a particular angle is given by 1/√(1-x2), where -1 < x < 1.

    What is the formula for the derivative of the inverse cot? ›

    The derivative of cot inverse x is equal to d(cot-1x)/dx = -1/(1 + x2). We can derive the cot inverse derivative using the implicit differentiation and first principle of derivatives.

    What is the formula for the derivative of a function? ›

    Let f be a function and x a value in the function's domain. We define the derivative of f with respect to x at the value x, denoted f′(x), by the formula f′(x)=limh→0f(x+h)−f(x)h, provided this limit exists.

    Top Articles
    Latest Posts
    Article information

    Author: Cheryll Lueilwitz

    Last Updated:

    Views: 5798

    Rating: 4.3 / 5 (54 voted)

    Reviews: 85% of readers found this page helpful

    Author information

    Name: Cheryll Lueilwitz

    Birthday: 1997-12-23

    Address: 4653 O'Kon Hill, Lake Juanstad, AR 65469

    Phone: +494124489301

    Job: Marketing Representative

    Hobby: Reading, Ice skating, Foraging, BASE jumping, Hiking, Skateboarding, Kayaking

    Introduction: My name is Cheryll Lueilwitz, I am a sparkling, clean, super, lucky, joyous, outstanding, lucky person who loves writing and wants to share my knowledge and understanding with you.